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This paper describes and analyses a series of methods for solving the 
algebraic equations obtained from the cell vertex finite volume dis- 
cretisation in one dimension. The objective is to explore the possibilities 
for improved iteration methods that may be applied to cell vertex 
discretisations of the Navier-Stokes equations in higher dimensions. In 
general there is no natural one-to-one correspondence between cell- 
based residuals and nodal unknowns for this system. In order to devise 
iteration schemes it is therefore necessary to provide a mapping 
between cells and nodes. The family of methods introduced here is 
based on the application of standard iterative techniques to a nodal 
residual formed of a combination of neighbouring cell-based residuals. 
It includes the familiar Lax-Wendroff iteration, upwind iteration 
schemes, and marching schemes capable of attaining convergence 
rates independent of the number of algebraic equations. The aim in 
each case is to set to zero the residual for each cell, apart from excep- 
tional cells such as those containing shocks. The final results show that 
matrix-based upwind iteration methods, using cell residuals modified 
to take account of critical points and applying several local iterations, 
converge in around 1 5 iterations. © 1994 Academic Press, Inc, 

1. I N T R O D U C T I O N  

Most work on the iterative solution of algebraic systems 
arising from discretising differential equations relies on a 
basic diagonal dominance. For  predominantly elliptic 
problems, on which the most effort has been concentrated, 
this usually arises naturally whether finite difference, 
element, or volume methods are used; and for convection- 
dominated flow problems it is common to force the issue 
by adding artificial dissipation to centrally differenced 
convective terms. 

The cell vertex approach is different in several ways and 
gives no natural diagonal dominance. In a convection-diffu- 
sion problem it takes as its primary goal the accurate 
approximation of the convective terms; in one dimension 
this gives a two-point stencil, centred on a cell or interval 
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rather than a node, to which is added a four-point 
approximation to the diffusion, similarly centred. As shown, 
for example, in [4, 8, 11 ], such a scheme has many desirable 
approximation properties which are achieved without the 
need for adjusting any parameters as the balance between 
convection and diffusion changes. Thus the scheme is ideally 
suited to approximating the singularly perturbed equations 
of fluid dynamics at high Reynolds numbers. The emphasis 
is on the inviscid first-order terms, which yield steady equa- 
tions of mixed hyperbolic/elliptic type even in subsonic 
regions and which are wholly hyperbolic in supersonic 
regions. 

This approach is not, however, without its difficulties. 
Most importantly, there is not, in general, any natural one- 
to-one correspondence between discrete equations and 
unknowns. The lack of diagonal dominance is one conse- 
quence and the difficulty in constructing a general error 
analysis is another. This situation is usually circumvented 
by introducing a mapping between cells and nodes, which 
combines neighbouring cell residuals to produce a nodal 
residual. This nodal residual is then driven to zero by itera- 
tion, although fast convergence, and in particular mesh 
independent convergence, is often difficult to achieve. 
Moreover, this does not always ensure that the individual 
cell residuals are themselves set to zero, and indeed this is 
not always possible or desirable, for example, at shocks. As 
a result, a basically simple and attractive idea, which many 
researchers have considered, becomes progressively more 
complicated and, hence, is often abandoned. 

This paper considers these issues in detail for typical one- 
dimensional problems. The aim is to take the cell vertex 
method as it has been developed and used successfully for 
multidimensional Navier-Stokes calculations in [ 1-3, 13 ], 
specialise it to one-dimensional problems where the con- 
vergence problems become apparent, and then explore 
possible means of remedying the situation by better defini- 
tions of the nodal residuals and improved iteration proce- 
dures. Sometimes it will be clear that these improvements, 
which can be very substantial, can be carried back to the 
multidimensional codes in a straightforward manner. More 
often further research will be needed to accomplish this, and 
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the main value of the one-dimensional studies will be to 
provide a target for which to strive. 

The layout of the paper is as follows. Sections 2 and 3 
describe model problems and their discretisation by the cell 
vertex method. Section 4 introduces some simple marching 
schemes based on the application of the symmetric 
Gauss-Seidel iteration to a system of discrete nodal equa- 
tions. These methods are shown to have a convergence rate 
that is independent of the number of unknowns for subcriti- 
cal nozzle flow. Section 5 is devoted to the Lax-Wendroff  
method as an iteration scheme and its various generalisa- 
tions; a convergence analysis based on the energy method is 
given and results presented for model problems which 
confirm the r61es of the various parameters involved. In 
Section 6 it is shown how various mappings between the 
cell-based residuals and nodal equations lead to general 
upwind iteration schemes which link the Lax-Wendroff  
method to the earlier simple marching scheme and solve the 
discrete equations in a number of steps that is independent 
of the number of cells. For the transonic nozzle flow 
problem, the ideal scheme involves splitting a residual in the 
sonic cell and combining two at the shock point. Finally, in 
the concluding section there is some speculation on the 
prospects of transferring the advances made in one dimen- 
sion to multidimensional codes. 

2. MODEL PROBLEMS 

Consider an initial boundary value problem for the 
nonlinear system of m equations 

~w ~f  
--=7 + =-- = g, X~(XL, XR), t>~O. (2.1) 
~Tt ~TX 

Here f(w) is normally a vector function of the m-vector of 
conserved variables w(x, t), and our main interest is in 
solving the steady problem 

df  
~ x = g ,  Xe(XL,  XR). (2.2) 

However, we may need to refer to the unsteady problem to 
resolve questions of nonuniqueness by consideration of 
solution stability; and since we wish that any methods 
developed for the Euler equations can be extended to the 
Navier -Stokes  equations, we shall on occasion consider 
f = f(w, wx) to be a function of the gradient of the conserved 
variables, which also provides an alternative means of 
resolving nonuniqueness. 

An example of such a system which will occur frequently 

in the paper is one-dimensional nozzle flow, modelled by the 
isenthalpic Euler equations, 

pu 0 , 

(2.3) 

where p and p denote the density and pressure multiplied by 
the cross-sectional area a of the nozzle and u is the velocity. 
The system is closed by the equation of state for an ideal gas 
which, with the constancy of the enthalpy, gives the pressure 
through the relations 

p = pc2/7, c 2 = [1 -- ½(7 - 1) u23, (2.4) 

where 7 is the ratio of specific heats for the gas. For subsonic 
inflow or outflow one boundary value should be prescribed. 
For  supersonic inflow both values must be given, whilst no 
boundary data is required at a supersonic outflow. This 
problem has the analytical solution 

p u = ~ ,  p r + ' = v o  r l[p2-- ½(Y --1) p2], (2.5) 

where /z and v are arbitrary constants determined by the 
boundary data. This solution is valid everywhere except at 
shocks, through which the values of the constants change 
according to the Rankine-Hugoniot  relations; see, for 
example, [ 10] for details. Throughout  this paper the cross- 
sectional area of the nozzle on the interval - 1 ~< x ~< 1 is 
taken as 

a(x) = ~1-1 - ~(1  -% cos ~x)]  2. (2.6) 

We shall also refer on occasion to the linear convection- 
diffusion equation in the form 

d2w d 
-e-r--~+--;-- (aw)=g,  x~(0 ,  1), (2.7) 

a x -  a x  

with Dirichlet boundary conditions at each end, w(0) = wL 
and w(1) = wR given; here e is a small positive constant and 
a(x), g(x)  are given functions. 

Very often the finite interval on which a problem is posed 
is an approximation to an infinite interval. Then the 
boundary conditions may be given in terms of a state at 
infinity wo~ ; or, in the case where the system is dissipative, 
there may be states w ~ and woo at the left and right ends. 

3. THE CELL VERTEX METHOD 

We begin by considering the problem (2.2). Let the finite 
interval [XL, XR] be divided by the points x c = x o <  
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xj < .. .  < xN = xR into N subintervals. Suppose first that 
g = g(x) so that (2.2) can be integrated exactly over each of 
these subintervals; if the total number of boundary condi- 
tions at the two ends of the interval is equal to m, then exact 
nodal values of f can be obtained by solving a discrete 
system of m(N+ 1) algebraic equations; and if f(w) has 
properties to ensure that it uniquely determines w, the exact 
nodal solution is obtained. 

This simple situation is not typical. More often g =  
g(x, w) and, furthermore, the Jacobian A(w)= c3f/c3w has 
points of singularity. In general the integration over a cell 
cannot be performed exactly, but it is approximated using 
the trapezoidal rule to give 

f(w(xj)) - f(w(x/_,  )) 

= g(s, w(s)) ds 
x:- I 

.~ ½h/_ 1/2[g(xj, w ( x j ) )  -+- g(xj l ,  w(x i  1))] ,  (3 .1)  

where hj 1/2 ~-X/-N/-1" The cell vertex approximation 
(2.2) is then based on 

• Afi- 1/2 
R/_ l /2(Wj 1, W j ) . =  hj--~--l~ 2 --/.,Lgj 1/2 

--0, I<~j<~N, (3.2) 

where Wj is an approximation to w(xj), f j=  f(Wj), g j=  
g(x/, W/), and A-j 1/2, P "/-1/2 are respectively difference 
and averaging operators for the cell [ j -  1, j ] .  

Replacing the discrete solution in (3.2) by the true solu- 
tion gives the truncation error; when the solution is smooth 
we may use Taylor expansions about the mid-point of the 
cell to obtain 

(c~f_  g)  
Rj-I/2(W/ l, Wj) = G j I/2 

1 (~6~3f 
+ hl 3 

"[- O(h. 4- 1/2)" 

Ox2 J j 1/2 

(3.3) 

If each residual (3.2) can be set to zero, we therefore expect 
that the approximation {W/} is second-order accurate in 
smooth flow regions and that this is true regardless of the 
mesh variation. However, we shall see that there are classes 
of problems for which we are unable to ensure that each 
residual is zero. 

Consider a scalar model problem with conditions 
Wo = wL, WN = WR, and the flux Jacobian a(wi_)> 0 and 
a(wR) < 0; we require the solution at N +  1 grid points but 
have N residuals and two boundary conditions. Thus the 

system is over-determined and the residuals will have to be 
combined in some way. By contrast, for solutions which 
possess a single transcritical expansion wave, with a(wl.) <~ 0 
and a(wR) >~ O, no boundary conditions are imposed and the 
result is an undetermined system and the possibility of 
multiple discrete solutions. This is a difficult case with many 
complications: in the example (c3w/c3t + ) a(w) c~w/~x = g(x), 
a smooth steady solution exists only if g is zero at some 
point x = x,. and w(x, )= ~, where a ( ~ ) =  0, but it is still 
difficult to integrate the equation from this critical point. If 
an iterative solution is attempted, it models the unsteady 
problem (which is always well posed) but even if it 
converges, the result obtained may depend on the details of 
the algorithm used and the initial conditions. As discussed 
below, the preferred resolution of the counting problem in 
one dimension is to create an extra equation by recovering 
the position of the critical point and splitting the residual 
there, which corresponds to using the local differentiated 
form a'(c3w/?x) 2 = g' to get out of the critical point; but the 
alternative of adding local dissipation is more generally 
applicable and just as effective• 

The incorrect counting of equations and unknowns for 
the above problems is a direct consequence of the existence 
of critical points a(w)= 0 in the continuous solution. We 
may therefore expect difficulties to arise for systems of equa- 
tions when an eigenvalue of the Jacobian matrix A passes 
through zero; this corresponds to the existence of sonic 
points and shock waves in the case of the steady Euler equa- 
tions (2.3). If an iterative technique such as Lax-Wendroff  
is used in an attempt to solve the cell vertex equations, the 
treatment of these critical points is crucial to the quality of 
the converged solution. 

To apply the cell vertex method to the second-order 
convection-diffusion equation (2.7), an approximation to 
the solution gradient at the nodes is needed. Instead of (3.2), 
the residual then becomes 

R/ ,/2tWj_l, w5_1; wj, w;) 

[ ; ] 1 A ( - - ~ W ' + a W ) j  1/2- g(s) ds . 
:-- hj 1/2 xj_ 

(3.4) 

The second-order accurate approximation to IV:' that is 
used in 1-11 ] is 

[ AWj+I/2 AWj-1/2], 
1 hj_ 1/2 - -  q- hi+ 1/2 

W; := hj 1/2 "~ hj + 1/2 hj + 1/2 hj 1/2 A 

I<~j<~N-1 ,  (3.5) 

with W~ defined by extrapolation, 

½h 1/2( W'o + W'I ) = AWI/ 2. (3.6) 

We again have a counting problem, however; because of the 
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Dirichlet boundary condition imposed at each end of the 
interval, there are only N -  1 unknowns and a possible N 
residual equations. Mackenzie and Morton [11] show by 
detailed error analysis that in the case a(x)  > 0 it is the last 
residual on the right that should be discarded so that the 
interior unknowns are given by 

Rj 1/2 =0,  1 < ~ j < ~ N -  1. (3.7) 

We shall be interested in iterative methods for the solution 
of the system (3.7), which has an unusual form, and for 
others which arise from combining residuals. 

The definition of the cell residual in (3.4) is a direct 
specialisation of that used for the Navie~Stokes equations 
in [1 ]; but the solution procedure used there was based on 
a Lax-Wendroff  combination of neighbouring residuals, 
application of artificial viscosity terms, and multigrid. We 
shall consider Lax Wendroff in Section 5, but first we 
consider more direct means of solving systems of the form 
(3.2) and (3.7). 

4. SIMPLE MARCHING SCHEMES 

In this section we consider marching schemes for solving 
the individual nonlinear cell vertex equations (3.2) when the 
Jacobian A has eigenvalues of different signs. The section 
begins with a description of a particularly simple yet effec- 
tive marching method, applied to subcritical isenthalpic 
nozzle flow. This is then generalised to a partially successful 
scheme for the transonic nozzle problem. There follows 
some analysis of the scheme which gives some guidelines for 
the choice of distribution matrices, but also indicates some 
of the limitations of the approach. 

4.1. A Marching Scheme fo r  Subsonic Nozz le  Flow 

For the isenthalpic Euler equations (2.3) there are two 
residuals that may be set to zero in each cell: 

(pu)j  - (pu) j_  1 (4.1) R(1) ._  
j 1/2 "-- hi_ 1/2 

and 

R ~2) 
j 1/2 " -  

(P u2 -~ P ) j  -- (P u2 + P)j I 

h]_ 1/z 

(4.2) 

with p defined by the equation of state (2.4) and the nozzle 
shape a given by (2.6). For subcritical flow the system will 

normally have one boundary condition at inflow and one at 
outflow. Let these boundary conditions be denoted 

Bo(Wo) = O, B N ( W N ) = O .  (4.3) 

A simple marching scheme which we shall generalise in 
the next section proceeds in the following way. The nodes of 
the mesh are scanned first from left to right and then in 
reverse order. At each interior node the state vector W s is 
updated by applying r/iterations of Newton's method to the 
nonlinear system comprising R ¢~ = 0  and R¢2) =0.  At " ' j  1/2 " ' j+  1/2 
boundaries the undefined residual is replaced by the given 
boundary condition. This procedure is illustrated schemati- 
cally by Fig. 1. 

We consider the behaviour of this method for various 
choices of the boundary data. Suppose that the pressure is 
given at outflow. Thus 

B N ( W N )  : :  PN--  P ~ .  (4.4) 

It is not difficult to see that if the momentum is defined at 
inflow and the local nonlinear equations are solved exactly 
at each node, then the constant momentum is swept 
downstream to the outflow, where an exact state is 
obtained. This enables the return sweep to generate an 
exact solution of the discrete algebraic system. Hence the 
definition 

Bo(Wo) := (pu)o - (pu)~,  (4.5) 

together with a sufficiently large value of r/leads to a direct 
method. The behaviour of this scheme for various values of 
r/is shown in Table I(a), which shows the number of double 
sweeps required to reduce the discrete l 2 n o r m  of the cell 
residuals to less than 10-9, starting from a random pertur- 
bation of a constant state. The inlet Mach number was fixed 
at 0.4, leading to a purely subsonic flow. The table clearly 
shows that if q is chosen large enough, such that the local 
nonlinear problem is solved exactly, then the method 
requires only one double sweep and it is effectively direct. 

The forward sweep transports some part of the inflow 
data directly to the outflow boundary, where the state vector 
is modified to be consistent with this transported data, 
together with the outflow data. The return sweep then 
returns some part of this state to the inflow. The speed of the 
transportation process is independent of the number of cells 

Y - ~  ( n+l 

', n 
j=O j=N 

FIG. I. Schematic diagram for marching scheme. 
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T A B L E  I 

Number of Double Sweeps Needed for Convergence of Simple 
Marching Scheme with (a) Momentum and (b) Velocity 
Prescribed at Inflow 

(a) (h) 

N q = l  q=3 q=5 q=10 N q = l  q=3 q=5 q=10 

17 6 2 2 1 17 * 19 19 19 
33 7 2 2 1 33 * 20 19 19 
65 9 3 2 1 65 * 20 19 19 

129 12 3 2 1 129 * * 20 20 
257 15 3 2 1 257 * * 20 20 

As so far required these could  be rec tangula r  matr ices  which 
could  be combined  to give a simple m × m square  matr ix .  
However ,  to keep  the no ta t ion  consis tent  with tha t  used for 
o ther  schemes below, we shall  fill ou t  each mat r ix  to a full 
m × m matr ix  and  restrict  its structure.  F o r  the purposes  of  
this section, we shall  assume for the pa i r  of  mat r ices  in (4.6) 
that  (i) there are no rows which are non-ze ro  in both  cases 
and (ii) that  their  sum is non-singular .  We  shall  write this as 

Ds + 1/2 (r~._~s) Dj+ 1/2 = ~ '  

rank(Dj + 1/2 + Dj+ 1/2) = m, I <<.j<~N-1. 
(4.7) 

Note. q is the number of Newton iterations at each node and * 
indicates a lack of convergence. 

in the grid. Thus the convergence of the entire process  
depends  only on the n u m b e r  of i tera t ions  required to 
resolve the two b o u n d a r y  states. This intuit ive a rgumen t  is 
conf i rmed by the results shown in Table  I(b) ,  for which the 
velocity is prescr ibed at  inflow. Apar t  from a weak 
dependence  of the required value of  r/ on N, the m e t h o d  
converges  independent ly  of the number  of nodes.  This  
convergence compares  very favourably  indeed with the 
results for Lax Wendrof f  presented  in Section 5.4. 

4.2. A Generalisation for Transonic Flow 

W h e n  the flow is wholly supersonic  bo th  residuals  will be 
set to zero on the sweep from inflow to outflow. Thus  in the 
t ranson ic  case we shall  need to switch to this s i tua t ion  from 
that  descr ibed  above  in Sect ion 4.1. F o r  this pu rpose  we 
in t roduce  a no ta t ion  that  we shall  need later: for each cell 
we define matr ices  D +_ m; and  then at each in ter ior  po in t  
we app ly  Newton ' s  me thod  to the solut ion of the system 

D~I/2R j 1/2=O=Of~+1/2Rj+l/2, I<~j<~N-1.  (4.6) 

F o r  example ,  in the simple scheme of Sect ion 4.1 and for 
subsonic  nodes  in the present  case, we have 

° 0) 
I<~j<~N, 

(4.8) 

which clearly satisfy these assumpt ions ;  for supersonic  
nodes D +_ 1/2 is the ident i ty  matr ix  and  Dr+ 1/2 is the null  
matrix.  

Fu r the rmore ,  we assume that  the system to be solved at  
each b o u n d a r y  has  the correct  rank;  thus we assume tha t  
the b o u n d a r y  condi t ions  can be l inearised with respect to 
the b o u n d a r y  fluxes to yield m × m square  matr ices  Do and  
O N for which s imi lar  proper t ies  hold:  

Do (r~.~s) D ~  2 = ~ ,  

+ (rows) 
D u -  1/2 ~ "LYN = ~ '  

rank(Do + D ~/2) = m (4.9a) 

rank(D+_l/2 + D w ) = m .  (4.9b) 

i ° 1 
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1 2 5  
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10 O 6  - O O  -04 Q2 O0 
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T I ' I " I " I " 

02 0,1 08 08 10 

1 751 
15 

1.25 

10, 

I 0 7 5 -  

I 02S. 

i 
J 1 ~ ' I " I " I 0 O 

IO 0 8  O 6  - 0 4  0 2  O 0  

(b] 

/ 

• i • i 
02 0 4  04 0. |  1.0 

FIG. 2. Marching scheme for the transonic problem (a) without shock fitting and (b) after shock fitting; the exact solution is shown as a dotted line. 
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In Section 4.1 the inflow boundary condition can be inter- 
preted as giving a Do which has only the first row non-zero 
and which is identical to the matrices D +_1/2 when the 
momentum is prescribed but has two non-zero entries when 
the velocity is prescribed. 

For nozzle flow with subsonic inflow and outflow, we 
suppose that a single interior supersonic region is possible. 
Then the marching algorithm described in Section 4.1 can 
be modified by either a preliminary scan to find this region 
or by finding it as part  of the marching problem. In either 
case the sweep to the right begins as in the subsonic case, 
updating Wj at all nodes until that on the left of the sonic 
cell is reached. At the sonic cell R ~2) will be needed both to 
update the subsonic node on its left and the supersonic node 
on its right. This residual is therefore split at the predicted 
sonic point: interpolation of the Mach number  defines the 
sonic point position and hence the state vector there and the 
partial residuals. So the subsonic partial residual (R(2 ) )  - 

enables the final subsonic state vector to be updated, while 
the supersonic partial (RI21) + enables the sweep through 
the supersonic cells to start. This can be continued right 
through to the node on the left of the shock cell; the whole 
sweep can then be completed through the subsonic nodes. 
The return sweep can be carried out in a similar manner 
either using the same sonic cell and shock cell locations or 
finding them dynamically. 

However, this simple scheme cannot work satisfactorily. 
The location and treatment of a sonic cell is easy and effec- 
tive; but the switch at a shock cell omits any use of the R (2) 

residual for that cell and so it cannot satisfy the global 
conservation law for the momentum. The result is an 
incorrectly positioned shock. One solution is to use shock 
fitting, by introducing the shock position as an internal 
boundary and a new state either side and then applying the 
Rankine-Hugoniot  shock relations, as was done in two 
dimensions in [ 14]. This gives an effective overall scheme, 
as can be seen from the results of Fig. 2 which are for an inlet 
Mach number of 0.5; but it is too complicated for general 
adoption in multidimensions. Although simpler two-dimen- 
sional shock fitting procedures are given in [15],  we shall 
find in the next two sections that there are much simpler 
procedures which are almost as effective. We shall see that 
the problem lies with the sudden switch in the distribution 
matrices at a shock, rather than being able to combine 
residuals from two cells at a node. 

4.3. Analysis of the Marching Schemes for fx = g 

Suppose g is a function of x only, so that in setting up the 
equations of Wj we may assume that it is integrated exactly. 
Then writing the nodal error at iteration n as E~' " -  j . - -  

W] - w(xj) and allowing for two neighbouring nodes to be 
at different iterative stages, we will have 

hg-1/2R7'1/2 = [f(WT) - f(WT'_ 1 )3 

- [ f (w(x j ) )  - f (w(x j_  1))3 

= A T E y -  A7 1E7 i, (4.10) 

for some set of matrices {Aj' }, approximating the Jacobian 
matrices {A(w(xs))} when the {E~ } are sufficiently small. 

Similarly, suppose we can write the boundary conditions 
in the form 

B~Eg := B0(Wg)--  B0(w(xc)) = 0 (4.1 la)  

ONE % :=BN(WN)--BN(W(XR))=O (4.1 lb)  

for some rectangular matrices B~ and B N. Now consider the 
system that is solved for W o given W~' and the boundary 
condition: it has the form 

B~E~=0,  D,72(AgE~-A'~E'~)=O. (4.12) 

We suppose this is solvable for Eg and write its solution as 

E~ = C~, E~', (4.13) 

where we have written C~I to indicate that it depends on A~' 
as well as A~. Similarly, on the right we have 

n n + m m BNEN=O, DN_I/2(ANEN--AN_,Eu 1)=0,  (4.14) 

whose solution we rewrite as 

EN = . m (4.15) C NIEN 1" 

This puts us in the position of proving a convergence result 
for cases when the same distribution matrices are used 
throughout the problem domain, as with the subsonic 
nozzle. 

THEOREM 4.1. Assume that, in the problem df/dx = g, g 
is a function of x only, that the distribution matrices D +_ 1/2 
used in the marching process equal D + independent of j and 
of n, and that the systems (4.12), (4.14) to be solved at the 
boundaries are uniquely solvable in the forms (4.13), (4.15). 
Then the convergence of the marching process is independent 
of the number of mesh points; and it depends only on the 
convergence of 

n n n n - -  1 
E o=  (CoNCNo)EO , (4.16) 

for certain matrices CON and CNo. 

Proof W~ and, hence, E o are determined by solving the 
system at the left boundary, after the right to left sweep at 
the end of the nth iteration, from data D-ATE'~ as in (4.12). 
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But in this sweep we have D -R" '"  - 0 , j =  1, 2, N -  1, * * j  + 1/2 ' " ,  

that is, 

n n n n -- n n D A 1 E I = D  A2E 2 . . . . .  DANE N. 

By the hypotheses of the theorem, the system formed from 
B~ and D-Ag can be solved for E~; thus the solution 
depends on ANETv and we write it as 

E; = C;NE~v. (4.17) 

where 

o ~ - = O - U n l - ( 1 - - O  ) c  2,  /3-=o-+(1-o-)u.  
(4.21b) 

Similarly, on the right we have from (4.14), 

0 ' 

Similarly, E N may be determined at the right boundary 
from the data D+An''N-11/2F"- 1/2--N ~ , where {E n-~/2} denotes 
the set of values left at the intermediate stage after the left to 
right sweep during the nth iteration. But in this sweep we 
have ]')+][~n,n-- 1 D ".', **j 1/2 = v , J = l ,  2, N - 1  so that 

o+An l/2"[gn 1/2 / - ) + A n  1/21~n-1/2 
~*N 1 ~ N - - I  - - ~  ~*N--2 ~N- -2  . . . .  

=D+A~-I/ZE~ 1/2 

and E ; -  1/2 is the value E~ 1 left at the end of the previous 
iteration. Hence we write 

. . . .  (4.18) E N - C u o E o  

so that (4.16) follows. II 

It is straightforward to generalise this result to cover 
the marching process used for subsonic nozzle flow in 
Section 4.1. The proper matching of the distribution matrices 
to the boundary conditions is clearly the key requirement 
for fast convergence. To exemplify this let us consider the 
equations linearised about a constant flow of unit density 
and velocity U. Then the equations and Jacobian are of the 
form 

Up,:+Ux=gl, A=(  U 1U) (4.19) 
C2px + Uux = g2, c2 ' 

where ~+ and /3+ are defined as in (4.21b). Hence from 
(4.16) the convergence of the marching process is deter- 
mined by the spectral radius of 

C o C N = ( 0 ~ + / 3 - - ~ - - / 3 +  /3 /0~--),0 (4.23) 

that is, by the ratio ~+/3-/c~-/3 +. In particular, for the 
choice used in Section4.1, namely 0 + = 1 , 0 - = 0 ,  the 
convergence factor is U2/c 2, which is less than one for the 
assumption of subsonic flow. Moreover, the observed data 
of Table I(b) correspond to an error reduction per double 
sweep of 0.355, which is in good agreement with this predic- 
tion for a problem where the Mach number lies in the range 
[0.4, 1.0]. 

Another important example, valid in the general linear 
case, is when each row of B o is a scalar multiple of a corre- 
sponding row of D +A. We may then show that the matrix 
Co CN is nilpotent of index two, regardless of the outflow 
boundary conditions, and we may use (4.16) to prove that 
E02=0. In fact, this convergence result is somewhat 
pessimistic, since E01= CNCo E° and the matrix CNCo is 
null under these conditions; this explains why we obtain 
convergence in one double sweep by taking the local 
iterations to convergence in Table I(a). 

where c is the sound speed. Suppose that u is given at inflow 
and p at outflow, while the equations to be solved at each 
internal node comprise a (0 ÷ : 1 - 0  +) weighted average of 
the residuals from the left and a (0 : 1 - 0 ) average from 
the right; that is, the distribution matrices have the form 

D+=(00+ 1 7 0 + ) ,  D-=(O0 1-00-  ) .  (4.20) 

Thus the equation system that is solved on the left gives, 
from (4.12), 

C ° = ( ~ 0  - / 3 1 ) 1 ( ~ 0 -  /30)=(10 /3 ~ ) '  (4.21a) 

4.4. A Marching Scheme for Convection-Diffusion 

The system of Eqs. (3.4)-(3.7), for which we have 
assumed that a(x) > 0, yields a matrix with a bandwidth of 
four elements, In general it is not obvious how best to solve 
this iteratively; but when convection is dominant, a 
marching scheme (from left to right) becomes a very natural 
approach. In calculating W j ,  we have W~_ 1 and W~_ 2 but 
we need a value for I4I}.; the proposed approach is to 
calculate it from (3.5) using A W~_ 1/2 and A W~+,~/2 from the 
previous iteration. 

On a uniform mesh with constant a we define the mesh 
P6clet number as fl := ah/e. Then it is straightforward to 
show that this iteration will converge if fl > 1, with an 
error reduction factor per iteration of (2 /3-1)  -1. For 
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comparison, a direct application of a Gauss-Seidel iteration 
to the nodal equations converges iffl ~> ½; but for example at 

27 rather than the fl = 3, the convergence factor is at most ~6 
value of ½ given for the proposed scheme. 

Convergence results can be derived on a non-uniform 
mesh and for a variable a, but as our main interest here is 
in the inviscid flow equations, these will be given elsewhere. 

5. LAX-WENDROFF AS AN ITERATION METHOD 

5.1. Formulation 

Following Ni [16],  the most common iteration schemes 
for the cell vertex discretisation are based on pseudo-time 
stepping using the Lax-Wendroff  algorithm, in either the 
one-step or the two-step form. In this section we discuss its 
development, analysis, and application for a first-order 
system typified by our model problem (2.2) with f = f(w). 
We use the notation 3 W for the update W n + 1 _ _  W n of the 
approximation, and the Taylor expansion on which the 
one-step form is based can be written in terms of the exact 
solution w of the unsteady equation (2.1) as 

{.}1 
6 w ~ - A t -~x - g + -~ A t 2 -~x A -~x - g 

(5.1) 

where Bg = Og/3w and At is a time step. In calculating 6W, 
cell residuals replace (c~t'/c~x- g) in this expression and we 
clearly need to combine those from two neighbouring cells 
to update W at the point between them. 

The result can be written, with a local (nodal) time step, 
in the form 

Atj 
~Wj= hj_l/2+hj+l/2(D~l/2hj 1/2I~j 1/2 

+ 1)7+ 1/2hj+l/2l~j+ 1/2), (5.2) 

where D + and D -  are distribution matrices which play a 
similar r61e to those in (4.6) and the residuals are given by 
(3.2). For a first-order update (i.e., neglecting the At 2 term 
in (5.1)) the two residuals should be combined so as to give 
a single residual over the pair of cells, thus not involving fs; 
this corresponds to replacing D + and D -  by the identity 
matrix L and the resulting hi_+ 1/2 volume weighting of the 
residuals is important for convergence--see Hall [5]  and 
Morton, Childs, and Rudgyard 1-12-1. However, the 
negative definite term of the form 6(A 2 6W), provided by 
the second-order update is also necessary for convergence, 

while the Bg term is relatively unimportant. So we take the 
Lax-Wendroff  distribution matrices to be of the form 

D L  ,/2 = I ±  2 j  1/~ ~,'j ,/~ 
h~ 1/2 ' (5.3) 

where we have introduced further (cell-based) time steps 
Atj 1/2, and Aj 1/2 is an average value of A for the cell. 
The resulting generalised Lax-Wendroffi teration was intro- 
duced in [ 12] for use with the Euler equations and has been 
applied very successfully by Crumpton, Mackenzie, and 
Morton [ 1 -] to the solution of the Navier-Stokes equations. 
The best choice of.4j_ 1/2 is probably the Roe average but a 
simple practical choice is A(/~W). 

This choice of distribution matrices has a conservation 
property which is important when one cannot ensure that 
all the cell residuals are set to zero after the iteration has 
converged. 

LEMMA 5.1. Suppose that f o r  some constant matr ix  K 

D + + D ~  1/2 K Vj. (5.4) j 1 / 2  . 

Then when the iteration (5.2) is applied for  j =  1, 2 ..... N -  1 
with any set o f  boundary conditions, convergence implies the 
conservation relations 

[ K f N  I + D N _ I / 2 ( f N - - f N  ~ ) ] - - [ K f l - - D ~ 2 ( f l - - f o )  ] 

= Dl+/zhl/2Pgl/2 + DN l/2hN l/2[2gN - 1/2 

N 2 

+ K Z hi+ 1/2~gj+ 1/2. (5.5) 
1 

P r o o f  Multiply (5.2) by the node-based ratio 
(hi_ 1/2 71- h]+ l/2)/Atj and sum over j. When 6Wj ~ 0 Vj the 
sum is zero and collapses to (5.5). | 

Satisfaction of (5.5) ensures that discrete analogues of the 
integrated conservation laws are satisfied at convergence, 
with the boundary conditions determining how well the 
boundary fluxes are approximated. Clearly K should be 
invertible so that the complete system of conservation laws 
holds. This lemma obviously does not give the most general 
allowable condition, since we may allow the bracketed 
terms of the update equation (5.2) to be premultiplied by 
any non-singular matrix {Cj}; the convergence of the 
updates then implies (5.5). 

5.2. Convergence Analysis 

The conditions needed for convergence are usually 
studied by Fourier analysis, but this requires rather restric- 
tive assumptions on the Lax-Wendroff  iteration. We wish 
to apply it to nonlinear equations on a nonuniform mesh 
and to choose local time steps, all conditions which lie out- 
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side a Fourier approach. We shall give the results from a 
Fourier analysis in Section 5.3 below, but we give here a 
result based on an energy analysis for the case of a scalar 
homogeneous equation. 

n - n  Define the iteration error Ej  and average wave speed a~ 
by 

n n ~ - n  n . n Ej := Wj - Wj , ajEy . = f ( W j ) - f ( W ~ ) .  (5.6) 

We introduce two global CFL parameters vN and Vc, based 
on the nodes and the cells, respectively, in terms of which we 
can give the local nodal and cell time steps: 

h j  1 /2  Atj ---- Y N  hj 1 / 2  " ~  hi+ 1/2, Atj_ 1 /2  = Y C  - - .  (5.7) 
2 laTI la7 ~/21 

Note that a~ in (5.6) is a time average while 5] 1/2 in (5.7) 
is a space average; note too that the distribution matrices 
reduce to 1 + v c sign(a7_ 1/2) so that (5.2), (5.3) reduce to 

6w~- V____E__N { [1 + vc sign(a]_ 1/2)] hi_ 1 / 2 R j  1 /2  

21all 
+ [1 -vcsign(5~+l/2) ] hj+,/2Rj+l/2}. (5.8) 

Then subtracting equilibrium relations from the update 
equation we have 

Ej + 1 n I ) N  " = E j  - - -  {[1 +vcsign(57_l/2) ] A_(aE)7 
2 ]a~] 

+ [1 - vc sign(a7+ 1/2) ] A + (5E)7}, (5.9) 

where we have used the standard forward and backward 
difference notation A + u s := uj + 1 - us, A uj := u j -  uj 1. 

There are two main technical difficulties in the analysis, 
one stemming from the variable coefficients a, 5, and fi, and 
the other arising from the boundary conditions. We 
anticipate that the Lax-Wendroff  procedure will need to be 
modified for sonic points and shocks, so we minimise the 
first difficulty by assuming that all coefficients have the same 
sign, namely positive. Hence we assume that Wg, is 
prescribed and therefore Eg = 0; and on the right we use the 
standard Lax-Wendroff  condition that f (  W~v ) = f (  W N_ 1) 
and, hence, that E u = E u 1. These conditions will lead to 
reasonably simple boundary terms in the analysis, for which 
we introduce the (time level dependent) weighted inner 
product 

N 1 

<u, v>. := ~ (aTa }) ujv s (5.10) 
j = l  

THEOREM 5.2. For the scalar homogeneous equation, 
with positive wave speeds and the solution prescribed on the 
left boundary, the Lax-Wendroff update on an arbitrary 
mesh with local time steps given by (5.7), and with zero 
extrapolated residual on the right boundary, satisfies 

IEE'+'Ir,-.< 7 IIEnll, with 7 < 1 ,  (5.11) 

if the CFL numbers satisfy 

max(vN/vo VNVc) 
N - - 1  / N = I  

< Z [A-(a]ET)] 2 [(a]/aT)A (ay-nEjn)]2. 
j = l  t j  1 

(5.12) 

Proof Multiply (5.9) by (fi]a~) 1/2, square both sides, 
and sum over j =  1, 2 ..... N -  1 to obtain 

V2N [ A + ( a"E')a ----g 2 
IIE"+IlI]= IIE"Ila2+-T ( 1 - v c )  2 

I1o 
+ ( l + v c )  2 A_(gt"E n) 21 

a n J 

--VN(En, A+(anEn)+Aa" (6"E"))~ 

+vNvc(E. ,A+(anEn)--zJ  (a 'E ' ) ;  
a / .  

1 {~ + (a°E "),~_ a'E"\ 
+ v ~ ( 1 - v ~ )  a" a n /~" 

(5.13) 

Summing the first inner product by parts yields a typical 
term 

- n  n - n  n 
(aj+lgJ+l~ (a;E7~ - n  n n - - -  . - n  n n 

ajajEj  \ a] / - -a j+ la j+ lE j+ lka]+l /=O'  

and the boundary conditions result in the relation 

A + ( a ' E ' )  + A _ ( a ' E ' ) )  - .  . 2 
E n, a n =(aN_IEN_I). (5.14) 

a 

Similarly, the second inner product reduces to 

A + ( a ' E ' )  - A _ ( a ' E ' ) )  En' a" a 

N 1 

Ee~ - . °  2 = - -  _ ( a j  Ej ) ]  

j = l  

and its associated norm Ilull2a := ( u , u ) . .  =: [[A - . .  2 - _ ( a  E )ll2. (5.15)  
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For the final inner product, we merely need to use the 
identities 

2(u, v>~ (Plull2÷ tlvll 2 2 = ~ ) -  Ilu- vii ~ (5.16a) 

=-(Hull2o+llvll~)+llu+vll  2o, (5.16b) 

according to whether Vc ~< 1 or v c ~> 1. In the former case, 
combining these relations and neglecting the last term of 
(5.16a) gives 

2 [ 2a - -g  [la 
VN 

IIE'*+'II~< IIEnlI2a+T (1-vc)  

÷ ( l + v c )  A (~E,)a  n 2] 

- VNV~ IIA_ (~n/")ll~, (5.17) 

which can be further reduced, because the A+ norm is 
dominated by the A_ norm, to 

A (6"E") 2 a 
IIE"+~If~llE"II~+VN VN a" 

- vc IIA _ ( ~ " E n ) l l  21. (5.18) 

The required result then follows from a readily established 
discrete Poincar6-Friedrichs inequality 

IIEnll2~const IIA_ (~"E")II2 2. (5.19) 

In the alternative case, Vc >1 1, the coefficients of the terms in 
the square brackets of (5.17) are changed to Vc(V c -  1) and 
Vc(Vc+ 1), so that (5.18) is replaced by 

n2 [ 2 IIE"+'JI]~IIE Ilo+vNvc vNvc 7 I1o 

-IIA_(~"E")II~]. I (5.20) 

Note that the theorem establishes asymptotic conditions 
n - ,  ~ and the for convergence, since at convergence a j  ---', a j  ~ aj 

inner product becomes independent of n. The CFL number 
conditions (5.12) also reduce to VN<V c, VNVc<I  as 
obtained from a Fourier analysis (see Section5.3). 
Moreover, for the conventional Lax-Wendroff  scheme v c = 
VN=V<~I, the neglected term in (5.16a) gives extra 
damping of the form 

1 d + ( ~ " E " ) -  zJ (~"E") 2, 
- 4 v2(1 - v2) an a (5.21) 

which corresponds to the fourth-order damping given by 

the Fourier analysis. Thus the theorem shows that the 
generalisation of the iteration that has been made for an 
arbitrary mesh, and with two local time steps, is correct and 
exacts no significant convergence penalties. 

5.3. Choice o f  CFL Parameters 

A Fourier analysis of the constant coefficient linear 
advection equation gives the amplification factor 

2 = 1 - iv N sin k Ax  - 2VNV C sin 2 ½k Ax, (5.22) 

from which we deduce that 

a r g 2 = - t a n  1 I  v N s i n k A x  x ] '  (5.23) 
1 -- 2VNV c sin 2 ½k A 

12f 2 = 1 - 4 v  N sin 2 ½k A x [ ( v  c -  YN) 

+ VN(1 -- V2C) sin 2 ½k Ax]. (5.24) 

The stability conditions YN~YC and YNYC~ 1, corre- 
sponding to (5.12), follow immediately from (5.24). More- 
over, it is clear from (5.23) that VN largely determines the 
rate of wave propagation, while taking v c >  VN gives a 
second-order damping term proportional to VN(V c -  VN). 
AS is now widely recognised, it is the wave propagation that 
dominates convergence behaviour, so we might expect it to 
be best to take VN quite close to Vc except where the 
presence of shocks requires more damping. Special cases 
seem to be in accord with this: taking v c = O  gives the 
central difference unconditionally unstable scheme; v c = 1 
corresponds to simple upwinding, which is very efficient for 
the scalar case; v c >  1 gives steady solutions identical to 
those obtained with Lerat's scheme [9];  and V c ~  
gives equilibrium equations which correspond to a least 
squares approximation, since (~/~Wj) 5~ (A f )  2 = 0  gives 
L1 + ~ - d f j  = 0 in the homogeneous case. 

In Table II we give convergence results which confirm 
these expectations. They are for the solution of the inviscid 
Burgers' equation, f ( w ) = ½ W  2, with forcing function 
- ½ w ( 1 - w ) x  on - l ~ < x ~ < l ,  as used in [18],  with 

TABLE II 

Convergence of the Generalised Lax-Wendroff Scheme 
for the Inviscid Burgers' Equation 

Y N Y C Iterations 

0.25 0.25 885 
0.5 0.5 278 
1.0 1.0 49 
0.5 2.0 284 
0.25 4.0 898 
0.125 8.0 2798 
0.0625 16.0 7715 
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w ( - 1 ) = 9  chosen so that the solution is everywhere 
positive. The table shows the number of iterations required 
to drive the residuals to 10 9, on a mesh of 50 nodes with 
constant initial data. The superiority of the upwind scheme 
over any other choice of the CFL parameters is most 
marked. 

The same problem but with boundary data w( - 1 ) = 9.0, 
w(+ 1 ) = - 9 . 2 6  gives a shocked solution. As remarked 
earlier, it is now not possible to set all the cell residuals to 
zero and the Lax Wendroff iteration will pick out an 
approximation in which pairwise averages of residuals are 
set to zero. If the shock position is such that ~s- 1/2 > 0 and 
~s+ ]/2 < 0, then at convergence (5.8) reduces to 

(1  + YC) hi_ 1/2Rj_ 1/2 -[- (1  - Yc) hi+ 1/2Rj+ ] /2 

=0 ,  j < s ,  (5.25a) 

(1 + v c )( h s _ 1/2 R s  - 1/2 -~- hs + 1/2 R s  + 1/2) 

= 0, j = s, (5.25b) 

(1 - Vc) hj ]/2Rj 1/2 + (1 + Vc) hi+ 1/2Rj+ 1/2 

=0,  j > s .  (5.25c) 

Thus (5.25b) shows that the residuals that straddle the 
shock have opposite signs; (5,25a) and (5.25c) combine to 
show that there is a decay of residuals away from the shock, 
the decay being monotone i f v c  > 1, oscillatory i f v  c < 1, and 
immediate if v c = 1. Only in the last case are the residuals 
other than Rs_  1/2 and Rs+ 1/2 set to zero, the transition 
being sharp with just two "shock cells." This is the motiva- 
tion for using upwind distribution matrices, tuned to the 
shock wave, which will be discussed in the next section. It is 
worth noting that, if Vc is based on the wave speed fi = 
A f l A W ,  then for homogeneous problems Vc>~ 1 ensures 
that the updates are TVD. 

Figure 3a shows a typical result obtained with Vc = 2.0, 
VN = 0.5. It will be noted that the position of the shock is not 
very accurate: this is partly because the trapezoidal rule 

used in (3.2) to calculate the residual has a large error for 
the cell containing a shock; and also because (5.25b) gives 
a poorly conditioned equation for Ws, since the dependence 
on W s is only through the inhomogeneous term. The intro- 
duction of some second-order artificial viscosity in just this 
equation to force Ws close to ½ ( Ws_  ] + Ws + 1 ) can alleviate 
both of these problems, as W s_ 1 and W s + 1 are well defined 
by the other equations. 

By imposing no boundary data and replacing the forcing 
function by g(x ,  w)= ½n sin nx, we obtain a transcritical 
expansion for the exact solution of the inviscid Burgers' 
equation. The results obtained with the same choice of CFL 
parameters, and with initial data such that W ° < 0  and 
W°N > 0, is shown in Fig. 3b. The discrete solution with a 
spurious expansion shock is typical of all choices of CFL 
parameters. The system of residual equations is now under- 
determined and the solution obtained depends on the initial 
data and the choice of Vc; indeed, the expansion point value 
WT, for which 6e 1/2 < 0  and ~le+l/2>O , is never changed 
for the upwind choice V c =  1. With the Lax-Wendroff  
method this situation can -only be avoided by the use of 
artificial viscosity terms; in practical multidimensional 
calculations such as in [ 1 ] this is provided by the fourth- 
order artificial viscosity. 

5.4. Applicat ion to the de Laval  nozzle problem 

For a system of equations, such as the isenthalpic Euler 
equations of (2.3), the local time steps have to be based on 
the maximum characteristic speed 12maxl of the Jacobian 
matrix A. Thus in terms of global CFL parameters vN and 
vc ,  we use the cell-averaged Jacobians ,~ to replace (5.7) by 

h j  1/2 A - -  
~ t j _  ]/2 = vc  , ~(max) 

"~j -  ]/2 

At  s = V N min(Atj_ 1/2, Atj  + 1/2). 
Y c  

(5.26) 
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FIG. 3. Discrete solutions of the inviscid Burgers' equation: (a) with a shock; (b) with a transcritical expansion, obtained with the Lax-Wendroff 

update. In both cases v s = 0.5, v c = 2.0 and the exact solution is shown as a dotted line. 
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1 G. 4. Discrete so lu t ions  for t ranscri t ical  flow in a de Laval  nozzle wi th  M r = 0.5 ob ta ined  wi th  the general ised Lax -Wendro f f  scheme: 

(a) VN=0.25, VC=4.0; (b)  v N =  0.16, Vc=  6.0. 

However, in the scalar case we have seen that taking Vc = 1, 
corresponding to simple upwinding, has several advantages; 
so here we might impose "selective upwinding" by choosing 
Vc locally to correspond to upwinding for a particular wave 
mode, i.e., for the mode )ul we set 

~ (max) 
j - -  1/2 

(Yc)j- 1/2 - -  ~ ( i )  ' (5.27) 
w -  1/2l 

although an upper limit might be placed on this should the 
wave speed of the selected mode approach zero. This idea 
will be exploited more in the next section. 

Let us consider a transonic nozzle problem with subsonic 
inlet and outlet conditions and cross-sectional area given by 
(2.6). One physical boundary condition has to be imposed 
at each boundary, while the Lax-Wendroff  algorithm 
requires all boundary values to be updated. This is achieved 
in two stages: in the first, the Lax-Wendroff  update is 
applied to the complete vector of unknowns at each bound- 
ary by setting a fictitious external residual equal to zero; 
then the change to the incoming characteristic variable is 
approximately set to zero by corrected updates obtained 
from setting !~o +) 5 W ~ = 0  and l~u -~ 6 W N = 0 ,  where !~o +) is 
the (rectangular) matrix of left eigenvectors of A o corre- 
sponding to positive (i.e., incoming) eigenvalues and I~u-) is 
similarly defined. Initial conditions are assumed to be 
constant and consistent with the boundary data. 

Setting M~ = 0.4 as in the first example of Section 4 gives 
a subcritical flow and, on a uniform mesh of fifty nodes, all 
the cell residuals can be driven to 10 9 by using (5.2) with 
VNVc= 1; as in the scalar case the choice V c =  1 is best, 
taking some 1500 iterations, with other choices taking a 
number of steps roughly proportional to vc.  

However, for all supercritical cases, where a sonic point 
(at x = 0) and a shock appear, the cell residuals cannot be 

driven to zero in their neighbourhoods. Convergence of the 
iteration is therefore based on the scaled nodal residuals 
6 W J A  O. No steady state can be reached, even on this basis 
for the standard Lax-Wendroff  algorithm (v c = VN) unless 
some artificial viscosity is added. But for V c = 6  and 
Moo = 0.5 the nodal residuals can be driven to 10 s in about 
10,000 iterations, after which updates of this order persist in 
the neighbourhood of the sonic point. The results for two 
choices of the CFL parameters are shown in Fig. 4; for 
smaller values of v c an expansion shock appears at the sonic 
point, and for larger values the shock is smeared and 
convergence is slower. Very similar results can be obtained 
by adding artificial viscosity to the standard Lax Wendroff 
scheme with only some 2000 iterations; rather sharper 
results can be obtained using the selected upwinding scheme 
(5.27) based on the slower wave speed, but some 50,000 
iterations are required. 

In summary, then, the generalised Lax Wendroff scheme 
can be used to obtain steady solutions to this model 
problem, but ignoring the counting problems at the sonic 
point and the shock exacts a heavy penalty in the rate of 
convergence achieved. The CFL parameters can be 
generalised further to yield a "matrix time-stepping" 
scheme; such developments lead naturally to the schemes 
considered in the next section. 

6. GENERAL UPWIND ITERATION SCHEMES 

In the previous section we discussed the use of generalised 
Lax-Wendroff  time-stepping schemes and their effect on the 
discrete solution in the region of sonic points and shock 
waves. We have also examined marching procedures aimed 
at solving the cell vertex equations in a more efficient and 
direct manner. Here we shall attempt to combine the two 
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techniques in order to obtain the best possible solution with 
the minimum of effort, for both subcritical and supercritical 
cases. 

The general class of problems to which we wish to apply 
the methods is of the form 

(f(w, Wx))x = g(x, w), (6.1) 

from which we can construct cell residuals R s 1/2 using 
(3.2), (3.4), and (3.5); note, however, that the Jacobian is 
always calculated as A := 3 t"/3 w. 

6.1. Nodal Residual Mappings 

As mentioned in the Introduction, one of the charac- 
teristic features of the cell-vertex method is the lack of a 
natural correspondence between cell residuals and nodal 
unknowns. In order to design effective iterative methods we 
therefore begin by defining a mapping between cells and 
nodes; in one dimension this combines two neighbouring 
cell residuals to produce a single nodal residual. In its most 
general form then, the nodal residual may be written as 

1 
Ns = hi_ 1/2 -~- hs+ 1/2 (DT- 1/2hj I/2Rj 1/2 

+ Dr+ 1/2hj+ 1/2 Rj+ 1/2), (6.2) 

where D +_ 1/2 are m × m matrices. Such distribution matrices 
have already appeared in Section 4, where they were chosen 
on the basis that the unknowns at each node should be 
updated using an appropriate number of residual com- 
ponents from each side. They have also appeared in 
Section 5, where they arise naturally from the Taylor series 
expansion in time (5.1) which forms the basis of the 
Lax-Wendroff  method. Variation of the second CFL 
parameter vc in this method corresponds to modification of 
the distribution matrices. As shown by Eq. (5.8) the choice 
v c = 1 gives a fully upwinded mapping in the case of a scalar 
equation, and this leads to immediate decay of residuals 
away from shocks. We now propose to choose the distribu- 
tion matrices in (6.2) as a natural generalisation of those 
used in this scalar upwind time-stepping algorithm. 

In order to effect the generalisation, the Jacobian matrix 
A=3f /@w is decomposed as A = V A V  -1, where V 1 
denotes the row matrix of left eigenvectors 1 ") and the 
upwinding is applied to the diagonalised system. This leads 
to the upwind distribution matrices, 

D ? _ l / 2  = k'j 1/2(I±sign(71j 1/2)) ~ ' j  11/2, (6.3) 

W. Typically then, if the cell residuals involve both viscous 
and inviscid terms, it is the inviscid terms which influence 
their distribution. The above approach to generalisation of 
the scalar upwind mapping is equivalent to introducing a 
cell-based matrix time-step--i.e., introducing a cell time 
step for each wave mode. Introducing the notation 
sign(A)= Vsign(A)V -1, Eq. (6.3) can be written more 
concisely as 

D +  1/2 = I__. sign(Aj_ 1/2). (6.4) 

Having defined the mapping (6.2) from cell to nodes, the 
solution is obtained by setting Nj = 0 at each node, subject 
to suitable boundary conditions. An advantage of the 
upwind distribution matrices is that the non-reflective 
boundary conditions of Section 5.4 can be implemented in a 
very natural and straightforward manner. This is achieved 
by defining "ghost" nodal values W 1 = w ~ ,  W N +  1 = Wvc 

and the corresponding residuals 

f0-- f _ ~  1 
R 1/2- hl/2 2 ( g ° + g  ~)'  

f~ - f N  1 
RN+ 1/2 -- hN - 1/2 2 (g~ + gN), 

(6.5) 

and forming the nodal residual (6.2) in the usual fashion at 
the boundary nodes j = 0 and j = N. The result of this is to 
impose the steady-state conditions 

(6.6) 
( I +  sign(A_ 1 / 2 ) )  hl/2R 1/2 = O, 

( I -  sign(,~N + 1/2)) hN- 1/2RN+ 1/2 = 0, 

which approximate the non-reflective condition of 
Section 5.4. 

6.2. A Hierarchy of  Iterative Methods for the Nodal 
Equations 

The simplest iteration which can be applied to solve the 
node-based problem Nj = 0, j = 0 ..... N, is the Richardson 
method. This is implemented by adding a constant multiple 
o9 of the residual to the corresponding unknown at each 
node; it is clearly equivalent to a standard time-stepping 
algorithm, in which the time step is not allowed to vary 
spatially. If the evolution of the solution is not of interest and 
only the steady-state solution is required, such methods are 
well known to converge unnecessarily slowly. Convergence 
may be enhanced by allowing spatial variation of the 
time step. This is equivalent to a generalised Richardson 
iteration, with the update 

where sign(A) is the diagonal matrix whose elements 
are sign(~i)). We repeat that, although we may have 
f = f(w, Wx), the mapping from cells to nodes provided by 
these matrices is based only on the derivative with respect to 

~ W j  = OJj hj_ 1/2 -~- hj+ 1/2 (D j_ 1~2hi_ 1/2I~j_ 1/2 

+Dj+1/2hj+I/2Rj+I/2). (6.7) 

581/114/2-5 
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The definition of the local relaxation parameter ~oj depends 
on the spectral radii of the local Jacobian matrices. The 
most common choice is 

~3Nj/OWj. Moreover, if we assume that we use the upwind 
distribution matrices (6.4) in (6.10) and that they are inde- 
pendent of W j, this iteratiofi reduces to 

(hj+l/2 ~/~/2) 
~oj = v max ~,p(/]j+ 1/2)' P ) ' (6.8) 

with p(A) denoting the spectral radius of A and v ~ (0, 1 ) is 
the usual CFL parameter. Such a scheme, i.e., based on 
(6.4), (6.7), and (6.8), was originally used by Huang [7] 
and was conceived as a generalisation to steady-state 
problems of the earlier work by Steger and Warming [19]. 
For a particular choice of the cell quant i ty/ ]  deduced from 
the linearisation A f -- /]  A W, it is simple to show that this 
scheme is equivalent to that proposed by Roe [17]. 

We have already observed in Section6.1 that the 
generalised upwind distribution matrices (6.4) may be 
obtained from the Lax-Wendroff distribution matrices by 
introducing a cell-based matrix time step. It is therefore also 
natural to define the nodal time step as a matrix; or 
equivalently to let the relaxation parameter in (6.7) assume 
matrix values. With reference to the scalar time step defined 
in (5.7), the update becomes 

6 W j =  -½ IA~I-' (Df-_,/2h;_l/2Rj 1/2 

+ Dj+ 1/2hj+ I/2Ri+ 1/2), (6.9) 

where ]AsJ = Vj ]Ajl V f  1, analogous to the definition of 
sign(/]). The update is then the true vector counterpart of 
the scalar upwinding scheme. This matrix time step may be 
viewed as a means of normalising the speed of each wave 
independently and the technique may thus be expected to 
give improvements over the nodal time step of (5.27) as the 
ratio of the speeds of fastest and slowest wave increases--see 
[22] for a similar algorithm. 

Consider now the application of a nonlinear variant of 
the Jacobi method to the system N j = 0 ,  j = 0  ..... N. As 
applied to linear problems, an iteration of Jacobi adjusts the 
unknowns at each given node to set the corresponding 
residuals to zero. Residuals are calculated using only 
solution values from the previous iteration. For nonlinear 
problems the same principle can be applied by using 
Newton's method to solve the local nonlinear problem 
Nj = 0 for each j. In practice the Newton iterations may be 
discontinued before the local problem has converged. A 
single iteration of Newton's method gives the update 

6Wj = - hi_ 1/2 + hs+ 1/2 ( D ~  l/2hj 1/2Ri_ 1/2 

+ Dr+ l/2hj+ 1/2Ri+ 1/2), (6.10) 

where the Jacobian of the nodal residual is defined as ~,  := 

6 W j = - ½ ( A j )  '[(I+sign(/]s_, /2))h j ,/2Rj ,/2 

+(I-sign(/]j+,/z))hj+l/2Rs+l/2], (6.11) 

where 

-~/= 1(sign(/]/ ,/2) + sign(/]j+ 1/2)) A/ 

- ½ { ( I+  sign(/]j_ 1/2)) h; 1/2 

+ ( I -  sign(/]j+ ,/2))hs+ 1/2} Bj, (6.12) 

with B;=(c~g/0w)j. Noting that s ign(A)A= [A[, we see 
that this scheme closely resembles the matrix time stepping 
scheme (6.9); the difference is more marked near sonic 
points where the matrix ,~j will need to be modified. The 
treatment of such critical points and their effect on the itera- 
tion will be discussed in detail in Section 6.3, although it is 
worth noting here that there appears to be no practical 
advantage of using (6.11) rather than the simpler (6.9). 

A simple variant of this scheme or that based on (6.9), 
which is derived from the Jacobi method, is to base them on 
the Gauss-Seidel scheme, in which the nodes are updated 
sequentially using the latest values to evaluate Nj. When the 
local iteration is continued until the nodal residuals are set 
to zero, we call this the general marching scheme. In the 
scalar case, with a constant wave direction, such an algo- 
rithm is very efficient if we update the Wj sequentially in the 
direction of the wavespeed, since away from critical points 
the nodal residual Nj depends only on discrete values at the 
adjacent upstream node, as well as the nodej  itself. Various 
orderings of the nodes are possible for Gauss-Seidel; it can 
converge fast when marched downstream but generally 
behaves like Jacobi when it is marched upstream. In the case 
where the Jacobian has eigenvalues of opposite signs it is 
therefore advisable to use the symmetric Gauss Seidel, 
which visits the nodes first from left to right, and then in 
reverse order. 

The symmetric Gauss-Seidel iteration applied to the 
nodal equations (6.2), with upwind distribution matrices 
defined by (6.4) is closely related to the special marching 
scheme discussed in Section 4.1. The rank of the upwind dis- 
tribution matrices is such that the nodal residual automati- 
cally receives the correct amount of information from each 
neighbouring cell. For the subcritical nozzle problem the 
convergence behaviour of the two methods is very similar. 
The advantage of the upwinding approach is in its treat- 
ment of critical points, which allows shocks to be captured 
in the correct location, without significant modification to 
the algorithm. 

In order to compare the efficiency of the present upwind 
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iteration schemes with that of the simple marching scheme 
of Section 4, we present results for the subsonic test case, 
with M ~  = 0.4. Table III shows the number of iterations 
required by various techniques to reduce the 12 norm of the 
nodal residuals to 10 9, on a regular grid of N points; 
optimal relaxation parameters are used in each case and for 
the symmetric Gauss-Seidel and marching the number of 
single sweeps is given. We note that the matrix time-step- 
ping method (6.9) requires between a third and a quarter of 
the iterations required by its standard counterpart (6.7), this 
being inversely proportional to the grid spacing in both 
cases. Such an improvement is to be expected, since the ratio 
of the convergence rates would be better than 12(2)1 : 12(~)1 for 
a linear problem--for  the range of Mach numbers 0.4 to 0.8 
this quantity takes values from approximately 2:1 to 9:1. 
Although the update (6.9) is more expensive to compute, 
the extra work is minimal for our two by two system. 
However, the computational cost would become a more 
important factor for larger systems of equations. 

As expected, the schemes based on the use of the sym- 
metric Gauss Seidel give vast improvements over the point 
iteration methods. With just one iteration at each point, the 
SGSM scheme gives a sevenfold improvement at N =  17 
and this increases with N; the general marching scheme 
gives further improvement and is fully grid-independent. 
The use of (6.9) either for a single iteration or for driving the 
nodal residuals to zero, as in the marching scheme, is as 
effective as using the Newton iteration (6.10), (6.11). The 
number of iterations required at each node was typically less 
than eight, with fewer needed on the finer grids, so that GM 
is much more efficient than SGSM. 

6.3. Application to the Transonic Nozzle Problem 

As we saw with the simple marching schemes in 
Section 4.2, the above techniques require further modification 
before they can be expected to give reliable solutions of the 
transonic nozzle problem. This is because the local counting 
problem regarding the cell residuals at sonic points exhibits 
itself in the nodal residuals as near-singularities in the 

T A B L E  llI 

Convergence Behaviour for the Subsonic Problem 

N T-S M-T-S S-G-S-M G-M 

17 571 163 22 8 
33 1108 310 27 8 
65 2155 601 33 8 

129 4234 1184 57 8 
257 8387 2351 93 7 

Note. T-S = time-stepping by (6.7); M-T-S = matrix time-stepping by 
(6.9); S-G-S-M = symmetric Gauss-Seidel using the matrix parameter  of 
(6.9); G-M = general marching with symmetric Gauss-Seidel and (6.9). 

Jacobian matrices, or loss of linear independence of the 
nodal equations. We therefore use modifications similar to 
those in Section 4.2. 

We begin by considering the scalar problem, denote the 
position of the critical point as xc, and define the interval 
(k, k + 1) such that ak < 0 < ak + 1- Linear interpolation of 
the wavespeed a gives 

ak 0,.~ , ( 6 . 1 3 )  
Aak + 1/2 

where O, represents the ratio ( X c - - X k ) : ( X k + l - - X k ) .  We 
define two "partial" residuals R[+ 1/2 and R~-+ 1/2 and, in 
order to avoid limit cycles as 0, tends to 0 or 1, use the full 
interval length in calculating the nodal residuals 

hk+l/2 
- -  R k + i / 2  

Nk hk 1/2 +hk+l/2 

hk + 1/2 Ff(w,.) - fk 1 ] 
- h  k 1/2+hk+l/21 Ochk+l/2 2 (gk+g') 

(6.14) 
hk + 1/2 + 

Rk+l/2 
N k  + 1 -- hk  + 1/2 "]- hk  + 3/2 

-- h k + l / 2  Ffk+~_--f(wc) 
hk + 1/2 -[- hk + 3/2 [_ ( 1 - 0 c) hk + lie 

, ] ~(gc+ gk+l) • 

This may be modified in several ways. We may, for exam- 
ple, make explicit use of the approximation 

f(w~)-- fk'~ ½ak(Wc-- Wk) 

,~½(Wk--Wc) Ochk+l/EAak+l/z, (6.15) 

with a similar expression forfk+l-- fc .  The values of w(xc) 
and g(w(xc), xc) may also be estimated by assuming that w 
and g vary linearly within the interval, instead of assuming 
sonic conditions there. The latter approach is essentially 
that taken by van Leer etal. [21], who describe a 
generalisation to inhomogeneous equations of the "entropy 
fix" proposed by Harten [6].  It may also be shown that the 
present method is a generalisation of that of Roe [20]. 
Finally, we note that whilst the weighted sum of the 
residuals approximates a residual for the complete cell, 

+ -R~+ , /2  may be thought of as an the difference Rk+l/2 
approximation to the derivative of the steady differential 
equation (2.1) evaluated at wc, xc, where a(wc)=0.  We 
note that this difference may be used directly to augment the 
original system of cell residuals, without defining the partial 
residuals. 

The generalisation of these ideas to the transonic nozzle 
problem is straightforward. Consider a sonic point corre- 
sponding to the eigenvalue 2 (1) and let us assume that the 
left eigenvector I (1) is constant in its neighbourhood. We 
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T A B L E  IV 

Convergence Behaviour for the Transonic Problem 

N T-S M-T-S S-G-S-M G-M 

17 601 87 37 14 
33 1385 184 82 * 
65 2590 301 130 15 

129 4934 787 312 15 
257 9912 1362 561 14 

Note. T-S = time-stepping by (6.7); M-T-S = matrix time-stepping by 
(6.9); S-G-S-M = symmetric Gauss Seidel using the matrix parameter of 
(6.9); G-M =general marching with symmetric Gauss-Seidel and (6.9), 
with residuals modified by (6.17) in each case. 

(6.9) must be modified to avoid the smallest eigenvalue of 
]AI from tending to zero; in practice, we may replace 2j by 
max([~j_ 1/21, ]~+ 1/2]) and impose lower limits on its size. 
This difficulty is avoided by using the Jacobi-Newton 
technique (6.10) if the Jacobian matrix is calculated directly 
from (6.17). However, we have found this latter technique to 
be unreliable at both the sonic point and the shock trans- 
ition node. Finally, we note that the general marching 
scheme may be improved by solving the two nodal equa- 
tions adjacent to the sonic point s imul taneously  during each 
sweep. 

Table IV shows convergence results of a transonic test 
case, with M~ = 0.5, for various iteration techniques. In 
comparison with the subcritical results, matrix time-step- 
ping gives even greater gains over the scalar time step (note 
that the ratio 12~2)1:12~1) ] becomes extremely large close to 
the sonic point). Once again, the general marching 
algorithm is the most efficient technique, although its 
convergence behaviour is somewhat worse than that of the 
subcritical problem due to the (relatively) slow convergence 
of the shock transition node. In going from matrix time- 
stepping to general marching, the change to the symmetric 
Gauss-Seidel gives only moderate gains while the iteration 
to local convergence gives the greatest gains. Although the 
definition of a simultaneous iteration for the nodal equa- 
tions bracketing the sonic point is important for the smooth 
evolution of the solution, it was not found to improve the 
global convergence noticeably. However, this would seem 
to depend on the choice of initial conditions, the modifica- 
tion being crucial in the scalar case. Figure 5a shows a 
Mach number distribution obtained with just one double 
sweep (note that the sonic point has already settled at the 
throat of the nozzle); Fig. 5b shows the solution a double 
sweep later; the converged solution is given in Fig. 5c. 
Finally, Fig. 5d shows the converged solutions obtained 
without any modification to take account of the sonic point, 
demonstrating the occurrence of an unphysical expansion 
shock. 

7. CONCLUSIONS 

As used successfully for the Navier-Stokes equations in 
two and three dimensions, the cell vertex method described 
in [1]  has four main components--definition of the cell 
residuals R, ,  use of distribution matrices D~,j to form nodal 
residuals N j, addition of second- and fourth-order artificial 
viscosity, and pseudo time-stepping to steady state with 
multigrid acceleration. Specialisation of this method to the 
one-dimensional model problems (2.3) and (2.7) has formed 
the starting point of the present study, which has then gone 
on to see how far and by what means the scheme can be 
improved. The outcome is shown by the results quoted in 
Section5.4 and those summarised in Table III and 
Table IV, which show vast improvements and culminate in 
highly effective schemes while still staying in the same basic 
framework. 

It is notoriously difficult to translate algorithmic 
improvements in one dimension to two and three dimen- 
sions, but here we will speculate on the prospects in the 
present case. Our first step was to use the upwind distribu- 
tion matrices (6.4) instead of the Lax-Wendroff  matrices of 
(5.3); for a scalar problem in 2D this entails switching from 
1 _+ v~_+ v~ v) which is the standard generalisation of the 
terms in (5.8), to (1 + v~cX~)(1 _+v~ )) with PV~cX)[ = Iv~'~[ = 1, 
so that only one cell contributes to the update at a vertex, 
instead of all four of those that meet there. For  the cell 
vertex residuals, a Fourier analysis shows that instead of the 
stability condition VcV ~ < 1 one then finds that no choice of 
Vu is stable; that is, the first two columns of Tables III and 
IV become infinite! Yet one can show that this is overcome 
by the next step of using the Gauss-Seidel techniques, which 
give the third columns in the tables; so, for example, the 
slow convergence of Lax-Wendroff  (and the poor quality of 
converged solution) can be completely overcome for 2D 
convection~liffusion problems by the steps described in this 
paper. 

A key generalisation is then to systems of equations. 
When the steady system is hyperbolic, as for flow which is 
everywhere supersonic so that streamlines define a time-like 
direction, experience with space marching schemes suggest 
that there will be no particularly significant problems. 
Major difficulties occur, however, when at least part of the 
flow is subsonic, giving a mixed elliptic/hyperbolic system. 
A relevant model problem is given by the Cauchy-Riemann 
equations, and how to set up and solve the cell vertex dis- 
cretisation of these still needs much more study. Note that 
we have not had to use multigrid techniques in one dimen- 
sion, but they will undoubtedly be needed here. Solving the 
Cauchy-Riemann problem and incorporating the result 
into the solution of the transonic flow problems seems to be 
the crucial step in taking the results of this paper into two 
dimensions. For  consider the final stage in our sequence of 
iterative methods, namely local iteration; preliminary 
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experience suggest that using this in the fully supersonic 
inviscid case, by applying the present methods at each fixed 
x station, works well. It is again the transonic situation that 
requires the most attention. 
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